Skip to content
Permalink
9bfb9ba527
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
252 lines (252 sloc) 9.38 KB
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
import { EventEmitter } from "events";
import { PooledBuffer } from "./PooledBuffer";
/**
* This class accepts a Node.js Readable stream as input, and keeps reading data
* from the stream into the internal buffer structure, until it reaches maxBuffers.
* Every available buffer will try to trigger outgoingHandler.
*
* The internal buffer structure includes an incoming buffer array, and a outgoing
* buffer array. The incoming buffer array includes the "empty" buffers can be filled
* with new incoming data. The outgoing array includes the filled buffers to be
* handled by outgoingHandler. Every above buffer size is defined by parameter bufferSize.
*
* NUM_OF_ALL_BUFFERS = BUFFERS_IN_INCOMING + BUFFERS_IN_OUTGOING + BUFFERS_UNDER_HANDLING
*
* NUM_OF_ALL_BUFFERS lesser than or equal to maxBuffers
*
* PERFORMANCE IMPROVEMENT TIPS:
* 1. Input stream highWaterMark is better to set a same value with bufferSize
* parameter, which will avoid Buffer.concat() operations.
* 2. concurrency should set a smaller value than maxBuffers, which is helpful to
* reduce the possibility when a outgoing handler waits for the stream data.
* in this situation, outgoing handlers are blocked.
* Outgoing queue shouldn't be empty.
*/
export class BufferScheduler {
/**
* Creates an instance of BufferScheduler.
*
* @param readable - A Node.js Readable stream
* @param bufferSize - Buffer size of every maintained buffer
* @param maxBuffers - How many buffers can be allocated
* @param outgoingHandler - An async function scheduled to be
* triggered when a buffer fully filled
* with stream data
* @param concurrency - Concurrency of executing outgoingHandlers (>0)
* @param encoding - [Optional] Encoding of Readable stream when it's a string stream
*/
constructor(readable, bufferSize, maxBuffers, outgoingHandler, concurrency, encoding) {
/**
* An internal event emitter.
*/
this.emitter = new EventEmitter();
/**
* An internal offset marker to track data offset in bytes of next outgoingHandler.
*/
this.offset = 0;
/**
* An internal marker to track whether stream is end.
*/
this.isStreamEnd = false;
/**
* An internal marker to track whether stream or outgoingHandler returns error.
*/
this.isError = false;
/**
* How many handlers are executing.
*/
this.executingOutgoingHandlers = 0;
/**
* How many buffers have been allocated.
*/
this.numBuffers = 0;
/**
* Because this class doesn't know how much data every time stream pops, which
* is defined by highWaterMarker of the stream. So BufferScheduler will cache
* data received from the stream, when data in unresolvedDataArray exceeds the
* blockSize defined, it will try to concat a blockSize of buffer, fill into available
* buffers from incoming and push to outgoing array.
*/
this.unresolvedDataArray = [];
/**
* How much data consisted in unresolvedDataArray.
*/
this.unresolvedLength = 0;
/**
* The array includes all the available buffers can be used to fill data from stream.
*/
this.incoming = [];
/**
* The array (queue) includes all the buffers filled from stream data.
*/
this.outgoing = [];
if (bufferSize <= 0) {
throw new RangeError(`bufferSize must be larger than 0, current is ${bufferSize}`);
}
if (maxBuffers <= 0) {
throw new RangeError(`maxBuffers must be larger than 0, current is ${maxBuffers}`);
}
if (concurrency <= 0) {
throw new RangeError(`concurrency must be larger than 0, current is ${concurrency}`);
}
this.bufferSize = bufferSize;
this.maxBuffers = maxBuffers;
this.readable = readable;
this.outgoingHandler = outgoingHandler;
this.concurrency = concurrency;
this.encoding = encoding;
}
/**
* Start the scheduler, will return error when stream of any of the outgoingHandlers
* returns error.
*
*/
async do() {
return new Promise((resolve, reject) => {
this.readable.on("data", (data) => {
data = typeof data === "string" ? Buffer.from(data, this.encoding) : data;
this.appendUnresolvedData(data);
if (!this.resolveData()) {
this.readable.pause();
}
});
this.readable.on("error", (err) => {
this.emitter.emit("error", err);
});
this.readable.on("end", () => {
this.isStreamEnd = true;
this.emitter.emit("checkEnd");
});
this.emitter.on("error", (err) => {
this.isError = true;
this.readable.pause();
reject(err);
});
this.emitter.on("checkEnd", () => {
if (this.outgoing.length > 0) {
this.triggerOutgoingHandlers();
return;
}
if (this.isStreamEnd && this.executingOutgoingHandlers === 0) {
if (this.unresolvedLength > 0 && this.unresolvedLength < this.bufferSize) {
const buffer = this.shiftBufferFromUnresolvedDataArray();
this.outgoingHandler(() => buffer.getReadableStream(), buffer.size, this.offset)
.then(resolve)
.catch(reject);
}
else if (this.unresolvedLength >= this.bufferSize) {
return;
}
else {
resolve();
}
}
});
});
}
/**
* Insert a new data into unresolved array.
*
* @param data -
*/
appendUnresolvedData(data) {
this.unresolvedDataArray.push(data);
this.unresolvedLength += data.length;
}
/**
* Try to shift a buffer with size in blockSize. The buffer returned may be less
* than blockSize when data in unresolvedDataArray is less than bufferSize.
*
*/
shiftBufferFromUnresolvedDataArray(buffer) {
if (!buffer) {
buffer = new PooledBuffer(this.bufferSize, this.unresolvedDataArray, this.unresolvedLength);
}
else {
buffer.fill(this.unresolvedDataArray, this.unresolvedLength);
}
this.unresolvedLength -= buffer.size;
return buffer;
}
/**
* Resolve data in unresolvedDataArray. For every buffer with size in blockSize
* shifted, it will try to get (or allocate a buffer) from incoming, and fill it,
* then push it into outgoing to be handled by outgoing handler.
*
* Return false when available buffers in incoming are not enough, else true.
*
* @returns Return false when buffers in incoming are not enough, else true.
*/
resolveData() {
while (this.unresolvedLength >= this.bufferSize) {
let buffer;
if (this.incoming.length > 0) {
buffer = this.incoming.shift();
this.shiftBufferFromUnresolvedDataArray(buffer);
}
else {
if (this.numBuffers < this.maxBuffers) {
buffer = this.shiftBufferFromUnresolvedDataArray();
this.numBuffers++;
}
else {
// No available buffer, wait for buffer returned
return false;
}
}
this.outgoing.push(buffer);
this.triggerOutgoingHandlers();
}
return true;
}
/**
* Try to trigger a outgoing handler for every buffer in outgoing. Stop when
* concurrency reaches.
*/
async triggerOutgoingHandlers() {
let buffer;
do {
if (this.executingOutgoingHandlers >= this.concurrency) {
return;
}
buffer = this.outgoing.shift();
if (buffer) {
this.triggerOutgoingHandler(buffer);
}
} while (buffer);
}
/**
* Trigger a outgoing handler for a buffer shifted from outgoing.
*
* @param buffer -
*/
async triggerOutgoingHandler(buffer) {
const bufferLength = buffer.size;
this.executingOutgoingHandlers++;
this.offset += bufferLength;
try {
await this.outgoingHandler(() => buffer.getReadableStream(), bufferLength, this.offset - bufferLength);
}
catch (err) {
this.emitter.emit("error", err);
return;
}
this.executingOutgoingHandlers--;
this.reuseBuffer(buffer);
this.emitter.emit("checkEnd");
}
/**
* Return buffer used by outgoing handler into incoming.
*
* @param buffer -
*/
reuseBuffer(buffer) {
this.incoming.push(buffer);
if (!this.isError && this.resolveData() && !this.isStreamEnd) {
this.readable.resume();
}
}
}
//# sourceMappingURL=BufferScheduler.js.map